
181

7
Mixed Approaches*

Lars Mathiassen
Thomas Seewaldt

Jan Stage

Abstract. Which approaches to software development
should be used in which situations? This fundamental
question is explored based on experiences from nine com-
parable small-scale software projects using prototyping
and specifying.

An empirical interpretation suggests that mixed ap-
proaches to software development will benefit from the
strengths of both specifying and prototyping. On function-
ality, robustness, ease of use, and ease of learning mixed
approaches led to products of a quality that was at least
comparable to the products of specialized approaches
based on either specifying or prototyping. Moreover the
Spiral Model was experienced as a useful framework for
combining specifying and prototyping approaches to soft-
ware development.

A theoretical interpretation relates these practical
lessons to The Principle of Limited Reduction. This princi-
ple suggests that effective software development must
cope with both complexity and uncertainty. This requires
a systematic effort combining analytical and experimental
approaches, independently of whether specifications or
prototypes are used.

Keywords: prototyping, specifying, spiral model, com-
plexity, uncertainty.

MANAGING PROCESSES

182

1. Introduction
Software design situations are characterized by complexity and un-
certainty. The degree of complexity represents the amount of rele-
vant information that is available in a given situation as a basis for
making design decisions. In contrast, the degree of uncertainty rep-
resents the availability and reliability of information that could be
relevant for the same purpose (Mathiassen et al. 1990, 1992). Soft-
ware developers are advised to cope with design complexity through
abstraction and decomposition (DeMarco 1979; Dijkstra 1972;
Langefors 1966; Wirth 1973; Wulf 1977; Yourdon 1982). This ap-
proach is often referred to as specifying because it involves exten-
sive use of specifications. Software developers are also concerned
with uncertainty, and new experimental approaches based on proto-
types have emerged as means to cope with software design uncer-
tainty (Boehm 1988; Budde et al. 1992; Davis 1982; Floyd 1984;
Gomaa et al. 1981; Gould et al. 1985).

In this article, we discuss the use of specifying and prototyping
approaches from both a practical and a theoretical point of view.
Empirically, our discussion is based on two software engineering
experiments in which nine comparable small-scale projects used dif-
ferent approaches to develop the same application software product.
In addition, the practical lessons are interpreted in the light of a
general theory of software development called The Principle of Lim-
ited Reduction, cf. Mathiassen et al. (1990, 1992). This principle
suggests that effective software development must cope with both
complexity and uncertainty. This requires a systematic effort com-
bining analytical and experimental approaches, independently of
whether specifications or prototypes are used. The conclusion, which
is consistent with the practical lessons as well as the theoretical in-
terpretation, is that software engineers should rely on mixed ap-
proaches to software design.

The first small-scale experiment, which has been reported ear-
lier in Boehm et al. (1984), was conducted at UCLA in 1982. Differ-
ent development teams used either a specifying or prototyping ap-
proach in the whole development process. Below, we refer to this as
the UCLA experiment. The results of this experiment were used to
compare the relative strengths and weaknesses of the two special-
ized approaches. As a consequence of their findings, the authors
suggest that for most large projects, and many small ones, a mix of
prototyping and specifying is preferable to the exclusive use of ei-

MIXED APPROACHES

183

ther approach by itself. In particular, they suggest to use risk man-
agement as an effective means to design and manage the specific
mix of prototyping and specifying that is necessary to cope with the
complexity and uncertainty of a given design situation.

Most contemporary writers agree with the main conclusion of
the UCLA experiment. It is generally suggested that different situa-
tions in software development calls for different approaches involv-
ing both specifications and prototypes (Andersen et al. 1990; Boehm
et al. 1984; Davis 1982; Floyd 1987; Stage 1989). Yet there are only
few authors who provide a systematic framework for selecting and
mixing these approaches. Some authors claim that a combination is
possible and they mention a number of advantages and disadvan-
tages of each approach. They do, however, give very little advice on
how to actually combine them, e.g. Fairley (1985) or Pressman
(1987).

Boehm's (1988) Spiral Model handles the mixing of specifying
and prototyping more systematically. Each cycle of the spiral in-
cludes a re-evaluation of risks and subsequent development of pro-
totypes and specifications, cf. figure 1. The main emphasis is on re-
solving sources of risk. In effect, the Spiral Model is a constructive
attempt to dynamically combine and mix specialized approaches
during a development effort.

The second small-scale experiment, reported in this article,
replicates, as far as possible, the research method and results of the
UCLA experiment. Two development teams used a mixed approach,
based on the Spiral Model, to develop the same application software
product. The experiment was carried out at Aalborg University in
1990. Below, it is referred to as the AU experiment. It was designed
to investigate the following questions:

• How does a mixed approach to software development com-
pare to specialized approaches based on either specifications
or prototypes?

• Does the Spiral Model provide a useful framework for man-
aging software projects based on a mixture of specifications
and prototypes?

Section 2 of this article summarizes the UCLA projects, involving
seven teams, and it describes, in detail, the AU projects, involving
two teams. Section 3 surveys the major experiences of the AU pro-
jects, compares them to the experiences of the UCLA projects, and

MANAGING PROCESSES

184

presents a supplementary interpretation of the use of the Spiral
Model. Finally, section 4 provides a theoretical interpretation that
relates the findings of the projects to The Principle of Limited Re-
duction.

2. The experiments
The AU experiment involved two student teams developing the
same product as in the UCLA experiment. These software projects
constituted the practical part of the students' second graduate se-
mester study project (Larsen et al. 1990). Such study projects ac-
count for half of the time in that semester and half of the major
subject grade. Two of the authors, L. Mathiassen and J. Stage, were
supervisors.

This section describes the key aspects of the AU software pro-
jects: the product developed, the Spiral model that was applied in
the development of the product, the development environment, the
organization and staffing of the two teams, the experimental data
collection procedures, and the main similarities and differences be-
tween this experiment and the UCLA experiment. To enable com-
parison, we provide a brief summary of the results from the UCLA
experiment.

2.1. The UCLA Projects
In the UCLA experiment (Boehm et al. 1984), seven teams of stu-
dents developed the same application software product. The product
was an interactive computer system supporting the COCOMO soft-
ware cost estimation model (Boehm 1981). The systems and the re-
lated documentation were developed over 10 weeks and comprised
roughly 3000 lines of Pascal source instructions.

All teams were required to collect data on their efforts and
products during the whole experiment. Four out of the seven teams
applied a specifying approach. They produced a requirements speci-
fication, a design specification, and a final product that included op-
erational code, user manual, and maintenance manual. The re-
maining three groups applied a prototyping approach. They pro-
duced the same final product, but they were required to produce and
exercise a prototype by the midpoint of the 10 weeks for which the
experiment lasted.

MIXED APPROACHES

185

The main conclusion was that each approach focuses only on
some of the properties that characterize software of high quality.
The specifying approaches produced more coherent designs and
software that was easier to integrate. The products were rated
higher on functionality and robustness and lower on ease of learning
and ease of use. The prototyping approaches yielded products with
roughly the same performance, but with about 40 percent less code
and 45 percent less effort. The products were rated higher on ease of
learning and ease of use and somewhat lower on functionality and
robustness. For this reason, the authors concluded that the specify-
ing and prototyping approaches seem to complement each other.

2.2. The AU Projects
The AU experiment involved two student teams. Each team should
develop the same application software product as in the UCLA ex-
periment, i.e., an interactive computer system supporting the
COCOMO software development cost estimation model. In this
model, calculations are based on computer system components being
described tentatively in terms of size and ratings with respect to 16
specific cost-driver attributes, e.g. hardware constraints, database
size, personnel skills and experience, and use of tools and modern
programming practices. These attributes are used to calculate the
amount of time and effort required to develop each of the compo-
nents as well as the overall system.

The algorithms and tables of the model were provided in
Boehm (1981) but each team was to design its own user interface
and file system. The user interface of this product is considerably
more extensive than the calculation algorithm. It must support se-
lective creation, modification, and deletion of the cost-driver pa-
rameters describing each component of a software product. It must
support the generation and formatting of selected output including
overall cost, effort, schedule estimates, and their breakdown by
component, phase, and activity. Finally, it must detect and provide
messages for erroneous input and provide some level of on-line help
facilities.

The design of the interface involves decisions on a further vari-
ety of options and alternatives including the use of menus, com-
mands, tables, and forms for input as well as the selection of differ-
ent output.

MANAGING PROCESSES

186

Finally, the teams were encouraged to develop a graphical user
interface. The main reason for this difference to the UCLA experi-
ment, where line oriented terminals were used, was that it seemed
unnecessary to ignore the technical options that had become avail-
able since 1982.

2.3. The Spiral Model
The purpose of the AU experiment was to investigate software de-
sign based on both specifying and prototyping approaches. This
mixing of approaches may be achieved in several, different ways. In
both projects, development was based on Boehm's (1988) Spiral
Model. This model introduces a systematic way of mixing specifying
and prototyping approaches. The choice of either of these ap-

Figure 1. The Spiral Model of software development, from Boehm
(1988).

MIXED APPROACHES

187

proaches is based on an analysis of the risk factors that are signifi-
cant to the development project considered. With the Spiral Model,
software development is generally divided into a number of cycles
where each cycle involves a progression and comprises the same
types and sequence of activities. Taken together, the cycles comprise
a spiral movement as shown in figure 1. In the figure, the radial
dimension represents the cumulative costs of the activities carried
out. The angular dimension represents the progress made in each
cycle of the spiral.

A typical cycle starts with determination of the outcome of this
cycle. This involves objectives, alternatives, and constraints of the
products being elaborated in this cycle. The key issue in the next
step of the cycle is to identify uncertainties that contribute signifi-
cantly to project risk. This is done through evaluation of alterna-
tives relative to objectives and constraints. Finally, this step in-
cludes formulation of a strategy for resolving the main sources of
risks. The third step comprises development and verification of the
product of the cycle. If the risk is high, some effort is made to re-
solve the sources of uncertainty. This may involve specifying as well
as prototyping. When all the main sources of risk have been re-
solved, development follows the waterfall model. The purpose of the
fourth step is to develop plans for the next cycle. This may include
division of the product into components to be developed separately.
Finally, the transformation from one cycle to the next is based on a
review of the products of the present cycle and the plans for the next
cycle.

2.4. The development environment
The final products were mainly programmed in Modula-2 on Sun-3
work stations under the Unix operating system. Compared to the
version of Pascal used in the UCLA experiment, the main advan-
tages of Modula-2 are better facilities for input/output, string han-
dling, and separate compilation with strong type checking. During
development no debugger to Modula-2 was available.

The graphical user interfaces were programmed in a graphical
tool chosen independently by the two teams. One team used Sun-
tools and the other team used Tooltool.

Finally, the teams had the opportunity to use Hypercard for
the Macintosh for development of early prototypes. Only one of the

MANAGING PROCESSES

188

two teams used this environment. The other team used Tooltool for
the early prototypes.

2.5. Team organization and staffing
During the design of the experiment, the 5 participating students
were divided into two teams according to their own choice. Below,
the two teams are referred to as SM1 and SM2.

Both teams were given the opportunity to organize their work
in whatever way they found appropriate. The team with three
members (SM1) conducted formal meetings and the rest of the time
they worked as separately as possible.

The team with two members (SM2) worked more closely to-
gether except when developing different prototypes and during pro-
gramming and implementation.

2.6. Acceptance test
In the UCLA projects, the performance rating was made by the
authors of (Boehm et al. 1984). Firstly, they exercised each student
team's product together to check its performance. Secondly, they in-
dependently exercised each product in more detail and rated it on a
scale of 0 to 10 with respect to the following four performance crite-
ria:

1. Functionality: The functional capability of the product, i.e.,
the relative utility of the various computational, user inter-
face, output, and file management functions.

2. Robustness: The degree of protection from aborts, crashes,
and loss of data provided by the product.

3. Ease of Use: The degree of user convenience when perform-
ing desired functions, the degree of conceptual clearness and
coherence in the user interface, and the avoidance of over-
constrained or unexpected program behavior. Boehm et al.
(1984) also characterize this property as lack of frustration
when using the product.

4. Ease of Learning: The ease with which new users can mas-
ter the product's workings and make it do what they wish.
The rating on this property also included an evaluation of
the user manual and other kinds of documentation sup-
porting the use of the product.

MIXED APPROACHES

189

The acceptance tests of the AU projects were carried out by all three
authors of this article. L. Mathiassen and J. Stage exercised the
products together and discussed their capabilities. Afterwards, they
exercised the products independently and rated them with respect
to the four performance criteria used in the UCLA experiment. T.
Seewaldt exercised and rated the products independently.

2.7. Limitations
The AU projects were designed to resemble the UCLA projects as
much as possible. T. Seewaldt participated both in the design of the
AU experiment and in the evaluation of the systems that were de-
veloped. He also took part in the original UCLA experiment as well
as in the reporting of it.

The detailed description of the UCLA projects, cf. (Boehm et al.
1984), and the involvement of T. Seewaldt facilitated a comparable
design of the AU projects. In both experiments, the task was to de-
velop a product with exactly the same functionality, the organiza-
tion and staffing of teams was almost the same, the participants
had comparable programming experience, cf. table 1, and both ex-
periments applied the same rating procedure and performance cri-
teria in the acceptance test. Besides, both experiments involved use
of specifications and prototypes.

UCLA AU

Specifying
teams

Prototyping
teams

Spiral Model
teams

Programming 36 53 26

Pascal/Modula-2 7 18 11

Unix 5 3 11

Table 1. Average programming experience (in months) of the teams
in the UCLA and AU experiments.

Both experiments involved a small number of teams. The UCLA
experiment involved four and three teams, respectively, and the AU
experiment involved two. The empirical findings are, for this reason,
not conclusive; they should be seen as systematic interpretations of
the results and experiences from a small number of comparable
projects. In addition, the specific setting of the AU experiment
introduced some experimental limitations. These limitations must

MANAGING PROCESSES

190

be taken into account in comparing the UCLA and the AU experi-
ments and in evaluating the general relevance of the results. The
main differences between the UCLA and AU experiments can be
summarized in the following way:

Development Environment: The programming languages, pro-
gramming environment, and computing resources were more power-
ful in the AU experiment. One should expect this to increase the
productivity in the AU experiment. On the other hand, the new and
richer possibilities for designing graphical interfaces introduced
more complexity which should decrease productivity in the AU ex-
periment.

Development Approach: In the UCLA experiment each team
had a specific procedure for performing their project. These proce-
dures were based on either a specifying or a prototyping approach.
In the AU experiment, the teams had the general description of the
Spiral Model (Boehm 1988), and a definite deadline for delivery of
the final product. There were no intermediate deadlines and no pre-
defined procedure. Combined with the nature of the Spiral Model it-
self, this required more management and communication activities.

In the AU experiment, the Spiral Model was used in a disci-
plined but informal way, not enforcing formal reviews and other
kinds of external control or interaction. Each group worked as an
autonomous unit, conducting only informal reviews when they
found it necessary. In addition, the Spiral Model is open to individ-
ual interpretation and the two groups turned out to interpret the
model differently.

Motivation and Stress: The AU students had only moderate
course activity in parallel with the experiment, whereas the UCLA
students took two or three other courses in parallel with their par-
ticipation in the experiment. The AU students were also involved in
designing and evaluating the experiment, whereas the UCLA stu-
dents did the experiment as part of a pre-destined course without
participating in the evaluation of the experiment. Consequently, one
should expect the AU students to be less stressed and more moti-
vated than the UCLA students.

Data Collection Procedures: In both experiments, product size
was measured in terms of delivered source instructions (DSI), and it
was determined by means of the definition in (Boehm 1981). Deliv-
ered source instructions include all lines of program code created by
the project team. A source instruction is one line of program code

MIXED APPROACHES

191

except that comments, blanks, and unmodified utility software com-
ponents are excluded. If more than one statement or only part of a
statement is placed on the same line, it still counts as one source in-
struction.

The collection of data on development effort was in both ex-
periments based on the same pre-defined categories of activity. Yet
some uncertainty is introduced due to individual interpretations of
these categories by each person and team. The AU students' high
interest in the experiment itself may have resulted in a more accu-
rate collection of experimental data.

The above differences between the UCLA and AU projects
make it difficult to compare the absolute values of the development
effort, the size of the products, and their performance ratings. On
the other hand, the distributions of relative effort and product per-
formance on the four criteria allow some interesting conclusions, as
we shall see below.

3. Practical results
A comparison of the AU and UCLA projects illustrates some of the
relative advantages and disadvantages of mixed versus specialized
approaches to software development. Below, we only discuss points
on which we find a comparison possible and relevant. On other
points, interesting experiences have been obtained. Some of these
are briefly mentioned at the end of this section.

3.l. Product size and development effort
The product size and development effort are illustrated in figure 2
and table 2. In the AU experiment, the two teams developed final
products with a size of 4114 and 5457 delivered source instructions
(DSI). Most of the code was in Modula-2 and the rest in the lan-
guage of the graphical tool applied for the user interface.

It is difficult to compare the absolute size and effort with the
results of the UCLA experiment because of the differences men-
tioned in section 2.7. Some of these differences could be expected to
increase and other to decrease productivity. But a comparison of the
ratio is possible and relevant. The productivity of the two teams in
the AU experiment were 4.6 and 9.3 DSI/ hour with an average on
6.4 DSI/hour. In the UCLA experiment the average productivity of
the specifying teams was 5.8 DSI/hour and the prototyping teams

MANAGING PROCESSES

192

6.3 DSI/hour. These figures suggest that despite the differences in
development approach and technology, and the individual varia-
tions between teams a simple measure of lines produced/effort gives
similar results in all three types of projects.

UCLA AU

Specifying
teams

Prototyping
teams

Spiral
Model teams

Characteristics Program Size 3391 2064 4786

Man hours 584 325 743

Productivity Overall 5.8 6.3 6.4

Table 2. Average product size and development effort in the UCLA
and AU experiment teams.

Figure 2. Product size and development effort.

3.2. Distribution of effort by phase
Again, the absolute amount of total effort cannot be compared due
to the differences discussed in section 2.7. But the distribution of ef-
fort on phases or categories of activity is comparable.

The distribution of effort in the Spiral Model teams combines
essential characteristics of the effort distribution of the specifying

MIXED APPROACHES

193

and prototyping teams, cf. figure 3. In the early phases of develop-
ment, they have a design peak that is similar to the specifying
teams, cf. figure 3(a). Due to prototype development, they also have
early programming peaks that are similar to the prototyping teams,
cf. figure 3(b). This indicates that the Spiral Model leads to a real
combination of activities from both the specifying and prototyping
approaches.

Furthermore, the Spiral Model seems to support early com-
mencement of design and prototype development, cf. figure 3(a) and
(b), and a more even distribution of effort by phase in the whole du-
ration of the project, cf. figure 3(c).

3.3. Product quality
The performance rating of the products in the AU experiment was
carried out in the same way as in the UCLA experiment. A compari-
son of these ratings leads to the following conclusions:

1. The specifying approaches seem to emphasize functionality
and robustness at the expense of ease of use and ease of
learning.

1 2 3 6 7 8 9 1054

10

20

30

40

0

Week Week

Week

%

% %

(c) Total Effort

(a) Design (b) Programming

0

4

8

12

16

Mixed Approach

Prototyping

Specifying

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 3. Distribution of effort by phase.

MANAGING PROCESSES

194

2. The prototyping approaches and the mixed approaches seem
to be more equally concerned with all four performance cri-
teria.

3. The mixed approaches seem to strongly emphasize robust-
ness, thereby avoiding the weakest performance aspect of
the prototyping approaches.

In the UCLA experiment, cf. (Boehm et al. 1984) and table 3, the
specified products have a higher average performance score on
functionality and robustness than the prototyped products. On ease
of use and ease of learning, the prototyped products rated higher
than the specified products.

Table 3. Average performance scores in the UCLA experiment.

Table 4. Average performance scores in the AU experiment.

Comparing the AU and UCLA projects, cf. table 3 and table 4, the
mixed approaches were at least rated at the same level as the two
specialized approaches. Furthermore, the mixed approaches have
quite an even distribution of scores on the four performance criteria.

UCLA

Specifying teams Prototyping teams

Functionality 6.08 4.78

Robustness 5.13 3.89

Ease of Use 3.25 4.67

Ease of Learning 3.71 4.89

Sum 18.17 18.23

AU

Spiral Model teams

SM1 SM2 Average

Functionality 6.00 8.33 7.17

Robustness 8.00 7.67 7.84

Ease of Use 6.67 7.33 7.00

Ease of Learning 6.33 5.67 6.00

Sum 27.00 29.00 28.00

MIXED APPROACHES

195

The four aspects considered in the performance rating all
stress external properties of the product. They represent the users'
point of view. An important question is whether the products of the
mixed approaches had the same technical quality as the products of
the specialized approaches. In the UCLA experiment this question
was handled in the following way: each student was asked to rate
each of the other teams' products in the order in which they would
prefer to maintain the product.

In the AU experiment, this procedure was impossible as there
were only two teams. Instead, both products were evaluated by T.
Seewaldt. His conclusion was that the maintainability of the prod-
ucts were comparable between the two experiments. In the AU ex-
periment, the maintenance manuals were far better but the pro-
grams contained fewer comments than the programs developed in
the UCLA experiment.

3.4. Distribution of code
In the UCLA experiment, each group built a user interface from
scratch using a character-oriented terminal as the primary in-
put/output device. Contrary to this, the teams in the AU experiment
developed their systems for a graphic work station and they used a
powerful graphic library. Due to this, one should anticipate the rela-
tive amount of code devoted to the user interface would be lower
compared to the UCLA experiment. This expectation did not hold.
Despite the technological differences, the distribution of code by
function is roughly the same in the UCLA and AU experiments, cf.
table 5.

UCLA AU
Specifying Prototyping Spiral Model

User Interface 67% 74% 75%
Model Computations 7% 5% 6%
File Management 12% 10% 9%
Miscellaneous 13% 10% 9%

Table 5. Relative distribution of code by function.

These figures indicate that the distribution of code by function
depends primarily on the characteristics of the product: a small cost
estimation system with an extensive user interface. The distribution

MANAGING PROCESSES

196

of code by function seems to be independent of the development ap-
proach and the applied technology.

3.5. Experiences with the spiral model
The AU projects were designed to make a comparison with the
UCLA projects possible, but also to learn about the strengths and
weaknesses of the Spiral Model as a practical framework for soft-
ware development. For the latter purpose, each team of the AU ex-
periment wrote a diary, cf. (Jepsen et al. 1989), to record their expe-
riences and evaluations during the project. On the basis of these
diaries and the other recordings made, the following lessons were
learned about the Spiral Model, cf. (Larsen et al. 1990):

• The Spiral Model must be interpreted and adapted to the
specific conditions of a project.

• The Spiral Model encouraged the teams to emphasize de-
sign considerations before developing the final system.

• The Spiral Model supported the teams in developing code to
learn from and with the intention of throwing it away.

• The Spiral Model supported the teams in distributing the ef-
fort more evenly over phases. More specifically, it supported
them in starting more actively by spending available time
efficiently already from the start of the project.

• It was difficult to use the Spiral Model as an explicit means
to manage time resources during the project.

• Risk analysis was mainly based on intuition and experience.
No detailed, quantitative analysis of risks was made by any
of the two teams.

• During risk management, new risks were identified and the
conception of the original risks was modified and changed.

• The spiral is, in some situations, a misleading metaphor for
a development process; in several situations, the teams
found it necessary to initiate new spirals in parallel to deal
with emerging problems and new risks.

Both teams were highly motivated and experienced in project work.
Under these conditions, the Spiral Model was, in summary, evalu-
ated as a useful framework for software project management, even
if some minor questions suggesting further development of the
framework were raised.

MIXED APPROACHES

197

4. Theoretical reflection
Software development projects of any reasonable size should use
variations or combinations of approaches based on specifications
and prototypes. This advice is supported by the experiments and
other sources, cf. (Boehm et al. 1984; Davis 1982). But why is this
so? If this general advice is the solution, then what is the problem?
What are the fundamental challenges and conditions for software
development that make this advice valid and useful? In the follow-
ing, we will introduce a theoretical framework and a fundamental
principle for software development that provides us with general
answers to these questions.

4.1. A simple model
The UCLA experiment was designed to learn about the relative
strengths and weaknesses of different approaches to software devel-
opment. The inquiry was based on a distinction between specifying
and prototyping as two broad categories of approaches, cf. (Boehm et
al. 1984). This distinction suggests a simple relation between the si-
tuational characteristics and the recommended approach of a soft-
ware project.

In some situations, software development is based on a more or
less formal specification of requirements. This specification is then
transformed into the final system through a number of phases. In
each phase, a new specification or description is developed through
transformation of the description produced in the previous phase.
The use of specifications is closely related to an analytical mode of
operation. Systems developers are advised to take advantage of ab-
straction to reduce complexity. This approach has some basic limita-
tions. It relies primarily on available information, it assumes that
the available information is reliable, it implies serious simplifica-
tion, and it restricts the ways in which organizational actors can
communicate and learn about the future system. There have been
attempts to modify the use of specifications in a more experimental
manner. However, the basic problems still remain.

In other situations, software development is based on design,
implementation, and evaluation of prototypes modeling part of the
total system. The design of the system is then developed based on
more or less realistic use of the prototypes. This prototyping ap-
proach to software development is closely related to an experimental
mode of operation. Systems developers are advised to take advan-

MANAGING PROCESSES

198

tage of the possibility of learning through experiments. The proto-
typing approach is a constructive response to some of the problems
and weaknesses of the specifying approach. But with the emphasis
on prototypes, learning, and involvement of users other types of
problems arise.

Considering specifying versus prototyping and only including
this one distinction leaves us with a simple and one-dimensional
understanding of approaches to software development. This frame-
work is too simple.

4.2. Reframing the issue
The practical and basic question we are concerned with is: “Which
approach to software development should we use in which situa-
tion?” In the following, we propose a more elaborate, but still quite
simple framework for understanding and explaining the relation be-
tween approaches and situations in software development, cf.
Mathiassen et al. (1990, 1992). The basic concepts of this framework
are illustrated in figure 4.

High

Low

High

Analytical

Experimental

Low

Specifications

Prototypes
Means of Expression

Mode of Operation

Uncertainty

Complexity

Situation

Approach

Figure 4. Situational characteristics and basic approaches to soft-
ware development.

Software development situations are, on the one hand, described in
terms of the degree of complexity and the degree of uncertainty that
the systems developers are facing. As noted above, the degree of
complexity represents the amount of relevant information that is

MIXED APPROACHES

199

available in a given situation as a basis for making design decisions.
In contrast, the degree of uncertainty represents the availability
and reliability of information that could be relevant for the same
purpose.

Approaches to software development are, on the other hand,
characterized in terms of their basic mode of operation and means of
expression. The mode of operation defines how systems developers
are advised to process information in order to make design deci-
sions. The mode of operation may, in one extreme, be analytical and,
in the other, experimental. When systems developers operate in an
analytical mode they simplify the available information through ab-
straction. In contrast, when operating in an experimental mode,
they learn from experiences thereby generating new information.

In addition, each approach is characterized by the means of ex-
pression that are used for describing and documenting design pro-
posals and decisions. Specifications can be used as means of expres-
sion to abstractly describe the properties and behavior of a system.
As opposed to this, different models such as prototypes and mock-
ups can be used as means of expression to illustrate the concrete
behavior of a system.

In the simpler framework based on the distinction between
specifying and prototyping we tend to take for granted that an ana-
lytical mode of operation and the use of specifications go hand in
hand just like experimentation and prototypes, cf. (Mathiassen et al.
1990, 1992). We also tend to relate the two basic approaches to each
their situational characteristic, i.e., specifying is considered effective
when facing complexity, and prototyping when facing uncertainty. A
fundamental premise for such a theory is that complexity and un-
certainty are independent characteristics of a design situation. It is,
however, difficult to find evidence supporting this viewpoint. On the
contrary, behaving in an analytical way we have to rely on an
imaginary simplified world, thereby introducing new sources of un-
certainty as to what extent this view is in accordance with the com-
plex real world. Correspondingly, behaving in an experimental way
we produce information as we go along, thereby introducing new
sources of complexity.

In our more elaborate framework, illustrated in figure 4, the
assumption is that complexity and uncertainty are intrinsically re-
lated. As a consequence, there is no simple way of relating means of
expression to modes of operation. When we consider complexity and

MANAGING PROCESSES

200

uncertainty as closely related, we cannot hope to reduce one of these
without affecting the other. This is expressed in the following basic
principle of software development, cf. (Mathiassen & Stage 1990,
1992):

The Principle of Limited Reduction: Relying on analytical be-
havior to reduce complexity introduces new sources of uncer-
tainty requiring experimental countermeasures. Correspond-
ingly, relying on experimental behavior to reduce uncertainty
introduces new sources of complexity requiring analytical
countermeasures.

The Principle of Limited Reduction describes the relationship be-
tween a situation and the mode of operation applied. It does not
take into account the different means of expression. Instead, it is
suggested that application of any of the two basic means of expres-
sion require a certain mixture of an analytical and an experimental
mode of operation. Plans are examples of analytical countermea-
sures to an experimental approach based on prototypes. Likewise,
quality assurance activities such as walkthroughs and reviews are
examples of experimental countermeasures, performed intellectu-
ally rather than practically, to an analytical approach. They are de-
signed to compensate for the sources of uncertainty, introduced
through abstraction and specification, by exploring issues like: Is
the proposed design a useful and sound basis for implementation
and maintenance?

Another example illustrating the above principle is provided by
the radical view of software design recommended by Parnas et al.
(1986): They argue that the analytical mode of operation should be
considered only as an ideal for software development. In practice,
descriptions and specifications have to be developed, reviewed, ex-
tended, and modified in an experimental mode.

4.3. Qualitative interpretation of the experiments
In both the UCLA and the AU experiments, the task of the software
teams was to develop an interactive computer system supporting
the COCOMO software development cost estimation model. Even
though the COCOMO model contains many parameters (16) and
complicated procedures, the problem domain is quite structured and
the complexity of the task is at most moderate. In designing the key
data structures and algorithms, the project teams got substantial
support from the COCOMO model. The main challenge is the design

MIXED APPROACHES

201

of the user interface. In addition to requirements related to func-
tionality and robustness, the system had to be easy to learn and
easy to use.

Considering the task of the projects, we conclude that the com-
plexity was moderate while the uncertainty was somewhat higher.
In the specific situations of the involved projects, other characteris-
tics were important as well. But this general analysis suggests that
an effective approach should include experiments with prototypes as
a key element. A traditional approach based on specifications is not
suited to the challenges at hand. This provides one interesting ex-
planation of the observed differences between the performance of
the specifying approach as opposed the performance of the proto-
typing and mixed approaches, cf. section 3.3.

More generally, the experiments suggest that it is worthwhile
to pursue the idea of combining different means of expression in the
same development effort, and that the Spiral Model is a useful
framework for combining specifications with prototypes, even if it
requires high management competence:

• A key result of comparing the two experiments is that the
mixed approaches seem to combine the strengths of the two
specialized approaches. On each of the properties consid-
ered, the mixed approaches led to products of a quality that
was at least comparable to the products of the two special-
ized approaches.

• A key result of the AU experiment is that the Spiral Model
provides a useful framework for combining specifying and
prototyping approaches in software development. The Spiral
Model is, however, not a simple procedure to be followed. It
is rather a general framework for understanding and man-
aging software projects and it is quite open to individual in-
terpretations.

The experiments have, in this way, illustrated the practical advice
implied by the Principle of Limited Reduction: Analytical and ex-
perimental modes of operation should not be understood and used
independently of each other. Effective software design requires a
systematic effort combining analytical and experimental modes of
operation.

MANAGING PROCESSES

202

Acknowledgment
This research has been partially sponsored by the Danish

Natural Science Research Council, Program No. 11-8394. We wish
to thank Troels Larsen, Sanne Liebmann, Casper Millum, Helge
Solberg, and Frank Tolstrup for their effort and cooperation during
the experiment. In writing this article, we have received valuable
comments and suggestions from Barry Boehm, Kaj Grønbæk,
Karlheinz Kautz, Andreas Munk-Madsen, Peter Axel Nielsen, Car-
sten Sørensen, Ivan Aaen, and the three anonymous reviewers.

References
Andersen, N. E., F. Kensing, J. Lundin, L. Mathiassen, A. Munk-Madsen,

M. Rasbech & P. Sørgaard (1990): Professional Systems Development.
Experience, Ideas, and Action. Englewood Cliffs, New Jersey: Prentice-
Hall.

Boehm, B. W. (1981): Software Engineering Economics. Englewood Cliffs,
New Jersey: Prentice-Hall.

Boehm, B. W. (1988): A Spiral Model of Software Development and En-
hancement. Computer, May.

Boehm, B. W., T. E. Gray & T. Seewaldt (1984): Prototyping versus Speci-
fying: A Multiproject Experiment. IEEE Transactions on Software Engi-
neering, Vol. 10, No. 3 (290–303).

Budde, R., K. Kautz, K. Kuhlenkamp & H. Züllighoven (1992): Proto-
typing—An Approach to Evolutionary Systems Development. Berlin:
Springer-Verlag.

Davis, G. B. (1982): Strategies for Information Requirement Determination.
IBM Systems Journal, Vol. 21, No. 1 (4–30).

DeMarco, T. (1979): Structured Analysis and System Specification. Engle-
wood Cliffs, New Jersey: Yourdon Inc. & Prentice-Hall.

Dijkstra, E. (1972): Notes on Structured Programming. (1–82) in: Struc-
tured Programming. London: Academic Press.

Fairley, R. (1985): Software Engineering Concepts. McGraw-Hill.
Floyd, C. (1984): A Systematic Look at Prototyping. (1–17) in R. Budde et al.

(Eds.): Approaches to Prototyping. Berlin: Springer-Verlag.
Floyd, C. (1987): Outline of a Paradigm Change in Software Engineering.

(191–210) in G. Bjerknes et al. (Eds.): Computers and Democracy. Ave-
bury: Aldershot.

Gomaa, H. & D. B. H. Scott (1981): Prototyping as a Tool in the Specifica-
tion of User Requirements. (333–342) in: Proceedings of the 5th IEEE In-
ternational Conference on Software Engineering.

MIXED APPROACHES

203

Gould, J. D. & C. Lewis (1985): Designing for Usability: Key Principles and
What Designers Think. Communications of the ACM, Vol. 28, No. 3
(300–311).

Jepsen, L. O., L. Mathiassen & P. A. Nielsen (1989): Back to Thinking
Mode—Diaries as a Medium for Effective Management of Information
Systems Development. Behavior and Information Technology, Vol. 8.

Langefors, B. (1966): Theoretical Analysis of Information Systems. Lund:
Studentlitteratur.

Larsen, T., S. Liebmann, C. Millum, H. Solberg & F. Tolstrup (1990): The
Spiral Model Used in Practical Systems development. Ms.S. thesis, In-
stitute for Electronic Systems, Aalborg University. (In Danish)

Mathiassen, L. & J. Stage (1990): Complexity and Uncertainty in Software
Design. (482–489) in: Proceedings of the IEEE International Conference
on Computer Systems and Software Engineering. Washington DC: IEEE
Computer Society Press.

Mathiassen, L. & J. Stage (1992): The Principle of Limited Reduction in
Software Design. Information, Technology & People, Vol. 6, Nos. 2–3
(171–185).

Parnas, D. L. & P. C. Clements (1986): A Rational Design Process: How and
Why to Fake it. IEEE Transactions on Software Engineering, Vol. l2, No.
2 (251–257).

Pressman, R. S. (1987): Software Engineering. A Practitioner’s Approach.
Maidenhead, Berkshire: McGraw-Hill, second edition.

Stage, J. (I989): Between Tradition and Transcendence. Analysis and De-
sign in Systems development. Ph.D. thesis. Institute for Electronic
Systems, Aalborg University. (In Danish)

Wirth, N. (1973): Systematic Programming. An Introduction. Englewood
Cliffs, New Jersey: Prentice-Hall.

Wulf, W. (1977): Languages and Structured Programs. In R. T. Yeh (Ed.):
Current Trends in Programming Methodology. New Jersey: Prentice-
Hall.

Yourdon, E. (1982): Managing the System Life Cycle. New York: Yourdon
Inc.

	star7 comment: * Published as: Prototyping and Specifying: Principles and Practices of a Mixed Approach. L. Mathiassen, T. Seewaldt & J. Stage. In: Scandinavian Journal of Information Systems, Vol. 7, No. 1, 1995.

