
367

15
Maturity and CASE*

Lars Mathiassen
Carsten Sørensen

Abstract. Many software organizations face serious
problems in their attempts to make expectations and re-
alities meet in introducing CASE technology. One prom-
ising approach to understanding CASE introduction
better and to managing it more effectively has been
developed by relating CASE introduction to the Capability
Maturity Model. This paper reviews software process ma-
turity as a framework for CASE introduction. The rele-
vance of the framework is discussed and three critical
questions are explored: 1) What is the role of organiza-
tional experiments in CASE introduction? 2) How do the
functional characteristics of CASE technology influence
CASE introduction? and 3) How does the organizational
context influence CASE introduction? The aim of the pa-
per, by way of this discussion, is to explicate the strengths
and limits of software process maturity as a framework
for CASE introduction, and to identify the most important
supplementary issues.

Keywords: software process maturity, the capability ma-
turity model, CASE diffusion

1. Introduction
The Capability Maturity Model (CMM) (Humphrey 1989a, 1990a;
Paulk et al. 1991, 1993; SEI 1991a, 1991b, 1991c) is a framework for
evaluating and improving software processes. The basic assumption
is that enhanced process quality is a prerequisite for improved

IMPROVING ENVIRONMENTS

368

product quality and increased productivity. The framework contains
a five-stage model for improving software processes through organ-
izational learning and intervention based on the systematic collec-
tion of experiences and data from software projects. CMM has, since
it was presented by Humphrey, rightfully gained much interest both
among software engineers and researchers (Bollinger et al. 1991;
Huff et al. 1991; Huff 1992; Dion 1993; Rugg 1993; Saiedian et al.
1995).

Humphrey and Curtis have used CMM as a framework to
study important prerequisites for, and key activities in, the success-
ful application of CASE technology in software organizations
(Humphrey 1989b; Curtis 1992). It is suggested that CASE intro-
duction be deferred until a sufficient level of process maturity has
been reached. Still, many organizations choose to introduce CASE,
even though they find themselves on the lower levels of maturity. In
fact, at Hughes Aircraft, a key example of a process improvement ef-
fort (Humphrey et al. 1991; Saiedian et al. 1995), CASE was used
before the recommended level of process maturity was reached
(Humphrey et al. 1991).

We will survey and evaluate CMM as a framework for CASE
introduction. Our objective is to explicate the strengths and limits of
software process maturity in this context, and to identify important
supplementary issues related to effective CASE introduction. Sec-
tion 2 provides a brief presentation of CMM. In section 3, we review
the key articles by Humphrey (1989b) and Curtis (1992), discussing
CASE introduction within the framework of CMM. The subsequent
sections explore the limits of this approach by discussing three criti-
cal questions related to CASE introduction: What is the role of or-
ganizational experiments in CASE introduction (section 4)? How do
the functional characteristics of CASE technology influence CASE
introduction (section 5)? How does the organizational context influ-
ence CASE introduction (section 6)? Finally, section 7 concludes the
article.

2. The Capability Maturity Model
The key assumption behind CMM is that the ideal software process
must be predictable. Cost estimates and schedule commitments
should be met with reasonable consistency and the quality of the re-
sulting products should generally meet user needs. Few software

MATURITY AND CASE

369

organizations operate according to this ideal criteria (see for in-
stance Humphrey (1990b)), but software organizations can use
CMM as a point of departure for improvements.

According to Humphrey (1990b), organizations must take five
steps to improve their software capabilities: 1) Understand the cur-
rent status of their development processes; 2) develop a vision of the

Productivity
& quality

ResultCharacteristicsLevel

Improved feed-back into process
Data gathering is automated and used to identi-
fy weakest process elements
Numerical evidence used to justify application of
technology to critical tasks
Rigorous defect-cause analysis and detect pre-
vention

(Quantitative)
Measured process
Minimum set of quality and productivity mea-
surements established
Process database established with resources to
analyze its data and maintain it

(Qualitative)
Process defined
Software Engineering Process Group established
to lead process improvement

(Intuitive)
Process dependent on individuals
Established basic project controls
Strength in doing similar work, but faces major
risk when presented with new chanallenges
Lacks orderly framework for improvement

(Ad hoc/chaotic process)
No formal procedures, cost estimates, project
plans
No management to ensure procedures are fol-
lowed, tools are not well integrated and change
control is lax
Senior management does not understand key
issues

Initial

1

2

Repeatable

3

Defined

4

Managed

5

Optimized

Risk

Figure 1. The capability maturity model (CMM) adapted from
Curtis (1992).

IMPROVING ENVIRONMENTS

370

desired process; 3) establish a list of improvement actions in order of
priority; 4) produce a plan to accomplish these actions; and 5) com-
mit the resources to execute the plan. CMM has been developed at
the Software Engineering Institute as a practical framework to sup-
port managers, practitioners, and consultants addressing these five
steps. The model characterizes a software process into one of five
maturity levels as illustrated in figure 1.

The five levels of process maturity are (Humphrey 1990b):
1 The Initial level: The first level characterizes the immature

software process. The process is performed in an ad hoc
manner, and is possibly even chaotic. No formalized proce-
dures for performing and managing the software process are
applied. Tools are not integrated with the process.

2 The Repeatable Level: On this level, basic project manage-
ment functions are applied, and both schedules and cost es-
timates are generally met. Software projects share a set of
behavioral patterns that are repeated from process to
process.

3 The Defined Level: The organization has now defined, i.e.
explicitly described key features of the process to ensure
consistent implementation and provide a basis for gaining
insight into the actual performance within projects.

4 The Managed Level: At this level the organization has initi-
ated comprehensive process measurements based on the es-
tablished definitions of the process, and beyond those of cost
and schedule performance. A central process database, con-
taining data about quality and productivity parameters for
each key task in the process, is established and maintained.

5 The Optimized Level: The organization now has a founda-
tion for continued improvement and optimization of the
process.

CMM can be used to analyze and diagnose the present mode of op-
eration in a software organization, and a number of techniques for
software process assessment have been developed at SEI
(Humphrey 1990a, 1990b; Humphrey et al. 1991; SEI 1991a, 1991b,
1991c). Equally important, CMM provides specific guidelines on how
to improve the software process on a given level of maturity. For
each level, a number of key practices are proposed to formulate a

MATURITY AND CASE

371

strategy for improvement (Humphrey 1990a; SEI 1991a, 1991b,
1991c).

3. CMM and CASE
In Humphrey's original work, two fundamental claims are made
concerning technology and software process improvements
(Humphrey 1990b): Advanced technology can usefully be introduced
at the defined level; the most significant quality improvements be-
gin at the managed level. This basic rationale for managing technol-
ogy is expressed by Humphrey in the following way:

“Automation of a poorly defined process will produce
poorly defined results. This is the normal consequence of
picking solution before understanding the problem.”
(Humphrey 1989a).

This rationale is further developed by Humphrey and Curtis dis-
cussing CASE introduction within the framework of CMM
(Humphrey 1990b; Curtis 1992). They both reach the conclusion
that in order to fully utilize CASE technology and obtain productiv-
ity benefits, the software process needs to have reached a managed
level of maturity:

“Once the process has come under management control, it
is possible to begin defining the tools that will benefit the
engineering process.” (Curtis 1992).

Curtis concludes that using CASE in software processes at the ini-
tial level will have little effect. Software processes near, or at, level
2, where the primary goal is to establish management control over
the process, can benefit from using project management tools. To-
wards level 3, CASE might be used in modeling activities and once
level 3 has been reached, some tools will suggest themselves. Curtis
notes that the primary benefit of CASE at level 4 and 5, among oth-
ers, is to provide the necessary quantitative data from projects.

Humphrey discusses how to go about implementing CASE in
organizations, and presents the following basic guidelines for CASE
introduction (Humphrey 1989b): 1) If your process is chaotic, get it
under control before attempting to install a CASE system; 2) de-
velop your process before or during CASE installation, but not after;
3) system conversion is critical, but converting the people will be the
hardest job of all; 4) recognize that a CASE installation is never

IMPROVING ENVIRONMENTS

372

completed; and 5) don't forget to think! In addition, Humphrey
points at the necessity of developers having the benefit of the CASE
tools in order for them to accept the technology, the feasibility of
having small coherent teams using CASE, and the importance of
CASE tools not turning into bureaucratic barriers for rational
thought (Humphrey 1989b).

Despite criticism raised (Bollinger et al. 1991; Saiedian et al.
1995), CMM is undoubtedly a useful and challenging framework for
software process improvements in general and for CASE introduc-
tion in particular. The key strengths of CMM as a framework for
CASE introduction are:

• CASE introduction is not seen as an aim in itself. Instead it
is rightfully placed as one possible means in the wider con-
text of software process improvements.

• Assessment techniques are provided to diagnose the present
operation within a software organization.

• Key practices are proposed to improve the software opera-
tion on each level of maturity. CASE introduction can, in
this way, be understood and evaluated in relation to other
complementary forms of intervention.

• A simple strategy for CASE introduction is implied by the
assumption that advanced technologies can only be usefully
introduced at the defined level.

The fundamental weakness of CMM as a framework for CASE in-
troduction stems from the assumed one-sided causal relationship
between process maturity and tool usage. The complementary posi-
tion needs to be considered, as pointed out by Jørgensen (1990),
where CASE is seen as an instrument for accelerating process im-
provements. On a more general level, we must acknowledge the
complexity of the issue, as illustrated by Huff et al. (1991). A brain-
storm on CASE adoption among software engineers and CASE re-
searchers resulted in 76 attributes about the prerequisites for effec-
tive CASE utilization. The suggested attributes reflect a diversity of
topics and problems, and among them were, for example: Champion
with stature (clout); commitment to training and education; encour-
age CASE “skunkwork” (projects experimenting on their own ini-
tiative); get the government to stop the “paper game”; and dispel job
loss fears from the adoption of CASE. We need to address CASE in-
troduction from a pragmatic perspective treating it as an art of the

MATURITY AND CASE

373

possible. In the subsequent sections, we examine the weaker points
of CMM as a framework for CASE introduction. We start with a
general discussion of the role of organizational experiments in
CASE introduction. Then we look more specifically at some of the
strategic choices related to the design of CASE interventions. In
particular, we look more closely at the functional characteristics and
the potential users of CASE technology.

4. Acknowledging experiments
There is, beyond doubt, a mismatch between the extensive invest-
ments made in CASE technology and the benefits achieved so far
(Aaen et al. 1991; Sørensen 1993a; Vessey et al. 1995). From the
point of view of CMM, this is not surprising: only a few organiza-
tions have reached the defined level of maturity (Humphrey 1990b)
and, as a consequence, most organizations cannot benefit from ad-
vanced technologies like CASE. March proposes, however, a view of
organizations and people that challenges the basic assumptions of
CMM:

“Interesting people and interesting organizations construct
complicated theories of themselves. In order to do this, they
need to supplement the technology of reason with a tech-
nology of foolishness. Individuals and organizations need
ways of doing things for which they have no good reason.
Not always. Not usually. But sometimes. They need to act
before they think.” (March 1976)

Our technologies of reason share, according to March, three con-
spicuous ideas. The first idea is the pre-existence of purpose: there
is a strong tendency to believe that objectives are prior attributes of
decision making and organizational behavior in general. The second
idea is the necessity of consistency: consistency is widely recognized
both as an important property of human behavior and as a prereq-
uisite for normative models of choice. The third idea is the primacy
of rationality: we decide what is correct behavior by relating conse-
quences systematically to objectives, implicitly rejecting the
processes of intuition and the processes of tradition and faith. CMM
is based on these fundamental ideas and beliefs. The strengths and
weaknesses of the approach is, therefore, strongly related to its em-
phasis on technologies of reason. It is, of course, important to note

IMPROVING ENVIRONMENTS

374

that the organizational maturity has to be at a minimum stage be-
fore CASE has any meaning at all. As noted by Humphrey (1989b),
a total chaotic software process might not benefit much, even from a
simple CASE tool, and Sørensen (1994) argues that very immature
software organizations do not have the necessary staff for utilizing
CASE technology. However, March provides a different framework
for interpreting the mismatch between the extensive investments
made in CASE technology and the rather minimal benefits achieved
so far. Sometimes organizations need to experiment. They need to
act before they think. Introducing CASE technology might, in some
cases, be a useful approach to formulate operational goals concern-
ing the use of advanced technologies and initiate a fundamental
transition process in a software organization.

One alternative framework for analyzing CASE introduction
from an innovation diffusion perspective is proposed by Wynekoop
(1992). Strategies for CASE implementation are characterized as ei-
ther laissez-faire, cautious, or active, and the relation between cur-
rent working practice and CASE technology are either seen as com-
patible, incremental, or radical (see figure 2). Viewed in this way,
CASE introduction processes can be conducted at different paces,
from virtually over-night to years. The laissez-faire strategy charac-
terizes the belief that a CASE tool will diffuse in the organization
without any organizational intervention. A cautious strategy im-
plies a purposefully careful and slow diffusion approach. An active
strategy is applied when a high level of organizational resources
and commitment are directed at diffusing CASE (J. L. Wynekoop,
pers. comm.). CASE technology is a compatible innovation if it is
perceived to be similar to current and past practice. It is an incre-
mental innovation if utilizing the tool demands minor changes in
current work practices, and it is a radical innovation if it is per-
ceived to be very different from current practice and past experi-

Compatible Incremental Radical

Laissez-faire

Cautious

Active

Figure 2. Case implementation strategy and perceived radicality of
the innovation (Wynekoop, pers. comm.).

MATURITY AND CASE

375

ences (Wynekoop 1992).
Wynekoop's model describes the intrinsic relationship between

the perceived radicality of CASE, and the diffusion strategy applied.
Other related frameworks are proposed in the CASE literature.
Fischer et al. (1993) characterize CASE implementation strategies
as either fast or slow (seducing the fox or boiling the frog) and Or-
likowski distinguishes between incremental and radical change
(Orlikowski 1993). Gallivan et al. (1994) argues for the analytical
distinction between, on the one hand, the nature of the innovation
which can be either radical or incremental, and, on the other hand,
the pace of change, i.e., either rapid or gradual change. They further
argue that segmenting radical innovations into discrete chunks, al-
lowing for gradual change, may be a viable strategy—a position con-
sonant with the notion of managing CASE implementation as a se-
quence of planned initiatives (Mathiassen et al. 1995), and with
Aaen's (1992) suggestion to bootstrap the CASE process.

In summary, CMM, with its bias for technologies of reason,
needs to be supplemented in its approach to experimentation and
organizational learning. March explores five general ideas on how to
develop and utilize what he calls sensible foolishness as a supple-
ment to the well-known technologies of reason (March 1976). The
first idea is to treat goals as hypotheses: we should experiment with
the goals of CASE introduction, and we should include alternative
goals to discover options related to the use of CASE that were not
previously imagined in the organization. The second idea is to treat
intuition as real: to permit ways of working with CASE tools that
are outside the present scheme for justifying behavior. The third
idea is to treat hypocrisy as a transition: hypocrisy is an inconsis-
tency between expressed values on the application of CASE and de
facto behavior that might represent an experiment or a learning
process eventually leading to a better situation. The forth idea is to
treat memory as an enemy: in most cases good memories support
good choices, but the ability to forget, or overlook, established tradi-
tions and standards is also useful, and is sometimes even necessary,
in making organizations successfully become expert CASE technol-
ogy users. Fifth, we can treat experience as a theory: learning from
personal history by encouraging interpretations and reinterpreta-
tions of concepts, beliefs and experiences related to the use of CASE
tools.

IMPROVING ENVIRONMENTS

376

5. Functional variations
A closer look at the functional variations of CASE technology can
lead to a more elaborate understanding of the possibilities and limi-
tations of applying this technology at different software process ma-
turity levels. CASE technology is, in general, providing computer
support for the use of development methodologies. But the term is
interpreted in a variety of ways, as, for example, CASE tool, CASE
workbench, or CASE toolkit (McClure 1988, 1989). The technology
provides a broad range of tool-functionalities (Fournier 1991) and
concepts such as Upper-CASE, Lower-CASE, and Integrated CASE
(ICASE) (McClure 1989; Gane 1990; Lyytinen et al. 1991) reflect at-
tempts to classify tools according to the part of the development
process they support. The two major distinctive features of CASE
technology are the central encyclopedia (or repository) containing
elements at a higher level than code statements or physical data
element definitions, together with a set of tools providing support
for one or more software development methodologies (Gane 1990;
Fournier 1991; Lyytinen et al. 1991). This definition excludes pro-
gramming environments and 3GL code generators as CASE tools
and it complies well with Humphrey's definition:

“Such an environment should include a set of compatible
tools, a common database, task management facilities, and
provision for configuration control.” (Humphrey 1989b)

Both Henderson et al. (1990) and Lyytinen et al. (1991) have devel-
oped functional models of CASE technology. Of these two quite
comparable CASE technology models, we have chosen to base the
following on the FCTM (Functional CASE Technology Model) devel-
oped by Henderson et al. (1990). The FCTM (see figure 3) classifies
the functionalities of CASE technology into three main components:
production technology, coordination technology, and organizational
technology. Table 1 presents the definitions for each of the func-
tional components in FCTM by selected quotes from Henderson et
al. (1990).

Humphrey and Curtis both stress that organizations should be
at level 2 at least, and preferably at level 3 before it makes any
sense to invest in CASE. This conclusion only makes sense because
Humphrey and Curtis consider the full utilization of an ICASE en-
vironment (Humphrey 1989b; Curtis 1992). Opening the black box
of CASE technology makes us appreciate which aspects and facili-

MATURITY AND CASE

377

ties of the technology can be utilized for specific purposes in par-
ticular organizational settings. If we look at the three functional
CASE components presented above, we can identify the following
archetypes of activities that CASE can support:

• Analysis and design activities utilizing the production tech-
nology functionality. This is the predominant way of utiliz-
ing CASE technology (Aaen et al. 1992).

• Cooperative and coordination activities using the coordina-
tion technology functionality in order to articulate the de-
velopment process and negotiate mutual agreements and
commitments. State-of-the-art CASE technology does not
sufficiently provide this type of functionality (Malmborg
1992; Mathiassen et al. 1995; Sørensen 1995; Vessey et al.
1995).

• Project management oriented activities where CASE reposi-
tory information is used in project planning and monitoring.
Here, parts from all three components of the FCTM can be
utilized.

From a practical management point of view it is necessary to ana-
lyze which aspects of a CASE-tool are feasible and desirable for a
software organization to utilize. Strategic considerations should ad-

Analysis Transformation

Organizational
Technology

Control Cooperative
Functionality

Support Infrastructure

Representation

Production
Technology

Coordination
Technology

Design Aid
Environment

Figure 3. Henderson et al. (1990) Functional CASE technology
model (FCTM).

IMPROVING ENVIRONMENTS

378

Production
technology

“. . . functionality that directly impacts the capacity of an in-
dividual(s) to generate planning or design decisions and sub-
sequent artifacts or products.” (p. 232)

Representation “. . . functionality to enable the user to define, describe or
change a definition or description of an object, relationship or
process.” (p. 233)

Analysis “. . . functionality that enables the user to explore, simulate,
or evaluate alternate representations or models of objects,
relationships or processes.” (p. 234)

Transformation “. . . functionality that executes a significant planning or de-
sign task, thereby replacing or substituting for a human de-
signer/planner.” (p. 234)

Coordination
technology

“. . . functionality that enables or supports the interactions of
multiple agents in the execution of a planning or design
task.” (p. 233)

Control “. . . functionality that enables the user to plan for and en-
force rules, policies or priorities that will govern or restrict
the activities of team members during the planning or design
process.” (p. 236)

Cooperative
functionality

“. . . functionality that enables the user to exchange informa-
tion with another individual(s) for the purpose of influencing
(affecting) the concept, process or product of the plan-
ning/design team.” (p. 236)

Organizational
technology

“. . . functionality and associated policy or procedures that
determine the environment in which production and coordi-
nation technology will be applied to the planning and design
process.” (p. 238)

Support “. . . functionality to help an individual user understand and
use a planning ad design aid effectively.” (p. 239)

Infrastructure “. . . functionality standards that enables portability of skills,
knowledge, procedures, or methods across planning or design
processes.” (p. 240)

Table 1. Definition of the functional CASE technology model (FCTM)
components from (Henderson et al. 1990).

dress the utilization of different aspects of CASE tools for various
purposes at various stages of process maturity instead of merely
considering the “big-bang” approach (Parkinson 1990). To illustrate

MATURITY AND CASE

379

this point, several sources point out the importance of software de-
velopers perceiving benefits from using CASE in order to lay a foun-
dation for diffusing CASE in the organization (Humphrey 1989b;
Aaen, 1992; Wynekoop et al. 1992; Orlikowski 1993; Gallivan et al.
1994; Sørensen 1994). The CASE implementation process can be fo-
cused in this direction by carefully selecting which work procedures
to support with which CASE tool functionality, that is, according to
the archetypes presented above.

6. Contextual variations
One of the main strengths of Humphrey and Curtis' approaches is
that they offer a specific framework and a clear focus to discuss the
implementation of CASE. Their narrow focus on software process
maturity has, however, a built-in blindness for the organizational
setting into which CASE is introduced. State-of-the-art CASE tools
primarily support software professionals in doing their job properly,
but developing computer-based systems is a process involving a va-
riety of other stakeholders. When only the software process is in fo-
cus, a whole set of important questions cannot be asked: how does
the organizational and cultural environment influence CASE intro-
duction? Who are affected by the introduction of CASE tools? Under
which circumstances can other actors benefit from utilizing CASE?

CASE tools are never introduced into an organizational vac-
uum. CASE introduction is a particular instance of innovation diffu-
sion and we must focus on how organizational characteristics influ-
ence this process (Tornatzky et al. 1982; Wynekoop et al. 1992;
Sørensen 1993b). Including the organizational context in an analy-
sis of CASE introduction implies an investigation of the match be-
tween technological and organizational characteristics. Fischer et al.
conclude that:

“. . . implementation of CASE technology was only success-
ful when it was regarded as a process of changing the cul-
ture of the IT department, i.e., when it was regarded as a
process of organization development.” (Fischer et al. 1993)

Aaen et al. (1991) analyze, in a review of state-of-the-art CASE lit-
erature, technological and organizational factors affecting CASE dif-
fusion, using an innovation diffusion framework consisting of the
following six groups of factors: 1) profitability, 2) scale of invest-

IMPROVING ENVIRONMENTS

380

ment, 3) technical characteristics, 4) acceptability, 5) change agents,
and 6) tool-user qualifications. The analysis concludes that no single
factor, but rather, a complex mix of factors, explains successful
CASE adoption. Orlikowski (1993) applies grounded theory in order
to identify and analyze organizational factors explaining the CASE
implementation process in two organizations. Gallivan et al. (1994)
conclude that both the structural and cultural characteristics of the
organization studied contributed to the success of the CASE imple-
mentation process, and they promote the characteristics of the or-
ganizational context and the characteristics of the technological in-
novation as the two key promoting or demoting factors for an effec-
tive CASE diffusion process in the organization investigated.

Several possible frameworks can be developed, each yielding
different results. In this context we will focus on two critical dimen-
sions of matching CASE technology and organizational context: po-
tential stakeholders and scope of effect (see figure 4). We describe
the groups of potential stakeholders in the CASE implementation
process simply as software experts, managers, and domain experts.
All three groups are ultimately going to be affected by the introduc-
tion of CASE. Gallivan et al. (1994) report a similar distinction: IS
managers, IS staff, and customers. They found that CASE imple-
mentation led to changes in the roles of both developers and users.
The change in the users' role in the development process was mainly
due to the CASE tool leading to an increased level of user involve-
ment.

Focusing on scope of effect, a CASE tool will not necessarily af-
fect the whole organization. It may only affect the work practice of
individuals, or of selected project groups. This implies a distinction
between the following scope of effect of CASE usage: few individu-
als, selected projects, or the entire organization. Gallivan et al.
(1994) documents a gradual CASE implementation process which
evolves from a few software experts to involving developers, domain

Domain experts

Managers

Software experts

organizationprojectsindividuals
Few Selected Entire

Figure 4. Type of stakeholders and scope of CASE effects.

MATURITY AND CASE

381

experts and managers in several divisions.
The application of CMM as reference framework for analyzing

CASE introduction provides a valuable perspective on the issues in-
volved in matching the software process with CASE technology. In
order to address questions regarding the broader organizational ef-
fect of diffusing CASE in organizations we need to apply comple-
mentary frameworks characterizing issues such as organizational
maturity, organizational diversity, potential stakeholders, and scope
of effects.

7. Conclusion
We have reviewed Humphrey's and Curtis' efforts to support the
management of CASE introduction and have found their approach
interesting and relevant, but limited in perspective. We have dis-
cussed three essential questions regarding CASE introduction
which the use of CMM does not provide means to answer properly:
1) What is the role of organizational experiments in CASE introduc-
tion? 2) How do the functional characteristics of CASE technology
influence CASE introduction? and 3) How does the organizational
context influence CASE introduction? As a complement to CMM,
each of these questions point to important strategic options related
to CASE introduction.

7.1. Organizational experiments
Most CASE adopting organizations do not have a sufficiently ma-
ture software process (in terms of CMM) to obtain large productivity
effects from using CASE. One possible conclusion is that these or-
ganizations have introduced CASE technology at an inappropriate
stage of development. We argue, based on March (1976), that or-
ganizations sometimes need to experiment and act before they
think. Wynekoop's characterization of different CASE implementa-
tion strategies—laissez-faire, cautious, or active—and of the per-
ceived distance between current work practice, on the one hand, and
the CASE technology, on the other hand, are forwarded as means of
broadening management considerations related to CASE introduc-
tion (Wynekoop 1992).

7.2. Functional variances
Not all aspects of a CASE tool need to be utilized by the software

IMPROVING ENVIRONMENTS

382

organizations in the first phases of CASE introduction. Different
outcomes of CASE introduction can be discussed according to the
three functional components of CASE technologies promoted by
(Henderson et al. 1990): production technology, coordination tech-
nology and organizational technology. We suggest that each of these
aspects can lead to the identification of different activities in which
to start utilizing CASE: analysis and design, cooperation and coor-
dination between participants, and project management.

7.3. Contextual variances
CASE tools are not introduced into an organizational vacuum, and
CASE may affect and be affected by more than the software process.
We discuss various models focusing on the organizational environ-
ment. We propose that managers should focus on strategic choices
as to what stakeholders to affect including managers, software ex-
perts as well as domain experts, and also on the scope of effects of
introducing CASE ranging from a few individuals over selected
projects to the entire organization.

Acknowledgments
This research has been partially sponsored by the Danish Natural
Science Research Council, Program No. 11-8394, and by the Danish
Technical Research Council. We would like to thank Gro Bjerknes,
Michael Vitale, Pål Sørgaard, Ivan Aaen, and the anonymous re-
viewers for constructive comments and suggestions. All errors in
this paper naturally remain the responsibility of the authors.

References
Aaen, I. (1992): CASE Tool Bootstrapping—How Little Strokes Fell Great

Oaks. (8–17) in K. Lyytinen et al. (Eds.): Next Generation CASE Tools.
Amsterdam: IOS Press.

Aaen, I., A. Siltanen, C. Sørensen & V.-P. Tahvanainen (1992): A Tale of
Two Countries—CASE Experience and Expectations. (61–94) in K. E.
Kendall et al. (Eds.): Proceedings from IFIP WG 8.2. Working Confer-
ence: The Impact of Computer Technologies on Information Systems De-
velopment, Minneapolis. Amsterdam: North-Holland.

Aaen, I. & C. Sørensen (1991): A CASE of Great Expectations. Scandina-
vian Journal of Information Systems, Vol. 3, No. 1 (3–23).

Bollinger, T. B. & C. McGowan (1991): A Critical Look at Software Capa-
bility Evaluations. IEEE Software, July (25–41).

MATURITY AND CASE

383

Curtis, B. (1992): The CASE for Process. (333–344) in K. E. Kendall et al.
(Eds.): The Impact of Computer Technologies on Information Systems
Development, Proceedings from IFIP WG 8.2. Working Conference Min-
neapolis. Amsterdam: North-Holland.

Dion, R. (1993): Process Improvement and the Corporate Balance Sheet.
IEEE Software, July (28–35).

Fischer, S., M. Doodeman, T. Vinig & J. Achterberg (1993): Boiling the Frog
or Seducing the Fox: Organizational Aspects of Implementing CASE
Technology. (419–437) in D. Avison et al. (Eds.): Human, Organiza-
tional, and Social Dimensions of Information Systems Development. Am-
sterdam: North-Holland.

Fournier, R. (1991): Practical Guide to Structured System Development and
Maintenance. Prentice-Hall Building, New Jersey: Yourdon Press.

Gallivan, M. J., J. D. Hofman & W. J. Orlikowski (1994): Implementing
Radical Change: Gradual versus Rapid Pace. In J. I. DeGross et al.
(Eds.): Proceedings of the 15th International Conference on Information
Systems. ACM Press.

Gane, C. (1990): Computer-Aided Software Engineering—The Methodolo-
gies, the Products, and the Future. Great Britain: Prentice-Hall.

Henderson, J. C. & J. G. Cooprider (1990): Dimensions of I/S Planning and
Design Aids: A Functional Model of CASE Technology. Information Sys-
tems Research, Vol. 1, No. 3 (227–254).

Huff, C. C. (1992): Elements of a Realistic CASE Tool Adoption Budget.
Communications of the ACM, Vol. 35, No. 4 (45–54).

Huff, C. C., D. Smith, K. Stephien-Oakes, E. Morris & P. Zarella (1991):
CASE Adoption Workshop. Software Engineering Institute, Carnegie
Mellon University.

Humphrey, W. S. (1989a): CASE Planning and the Software Process. Tech-
nical Report CMU/SEI-89-TR-26. Software Engineering Institute,
Carnegie Mellon University.

Humphrey, W. S. (1989b): Improving the Software Development Process.
Datamation, Vol. 35, No. 7 (28–30).

Humphrey, W. S. (1990a): Characterizing the Software Process: A Maturity
Framework. (62–75) in T. DeMarco et al. (Eds.): Software State-Of-The-
Art: Selected Papers. Dorset House Publishing.

Humphrey, W. S. (1990b): Managing the Software Process.. Software Engi-
neering Institute, Carnegie Mellon University.

Humphrey, W. S., T. R. Snyder & R. R. Willis (1991): Software Process Im-
provement at Hughes Aircraft. IEEE Software, July (11–23).

IMPROVING ENVIRONMENTS

384

Jørgensen, P. C. (1990): Accelerating Process Maturity with CASE. Ameri-
can Programmer, Vol. 3, No. 9 (10–15).

Lyytinen, K., K. Smolander & V.-P. Tahvanainen (1991): Modelling CASE
Environments in Systems Development. (26–44) in K. Smolander (Ed.):
Metamodels in CASE Environments. University of Jyväskylä.

Malmborg, L. (1992): Diffusion of CASE—An Obstacle Race? Scandinavian
Journal of Information Systems, Vol. 4, No. 1 (105–118).

March, J. G. (1976): The Technology of Foolishness. In J. G. March et al.
(Eds.): Ambiguity and Choice in Organizations. Oslo: Universitetsfor-
laget.

Mathiassen, L. & C. Sørensen (1995): The Why, What, Who, Where, and
How of CASE Management. (479–492) in B. Dahlbom et al. (Eds.): Pro-
ceedings of the 18th Information systems Research seminar In Scandina-
via, Gjern, Denmark, August 11–13. Institute for Informatics, Gothen-
burg University.

McClure, C. (1988): The CASE for Structured Development. PC Tech Jour-
nal, Vol. 6, No. 8 (51–67).

McClure, C. (1989): CASE is Software Automation. New Jersey: Prentice-
Hall.

Orlikowski, W. (1993): CASE Tools as Organizational Change: Investigating
Incremental and Radical Changes in Systems Development. MIS Quar-
terly, September (309–340).

Parkinson, J. (1990): Making CASE work. (213–242) in K. Spurr et al.
(Eds.): CASE on Trial. Great Britain.

Paulk, M. C., B. Curtis, M. B. Chrissis et al. (1991): Capability Maturity
Model for Software.. Software Engineering Institute, Carnegie Mellon
University.

Paulk, M. C., B. Curtis, M. B. Chrissis & C. V. Weber (1993): Capability
Maturity Model—Version 1.1. IEEE Software, July (18–27).

Rugg, D. (1993): Using a Capability Evaluation to Select a Contractor.
IEEE Software, July (36–45).

Saiedian, H. & R. Kuzara (1995): SEI Capability Maturity Model's Impact
on Contractors. IEEE Computer, January (16–26).

SEI (1991a): Capability Maturity Model for Software. Software Engineering
Institute, Carnegie Mellon University, SEI-91-TR-24.

SEI (1991b): Key Practices of the Capability Maturity Model. Software En-
gineering Institute, Carnegie Mellon University, SEI-91-TR-25.

SEI (1991c): Software Process Maturity Questionnaire. Software Engineer-
ing Institute, Carnegie Mellon University, SEI-91-TR-25.

MATURITY AND CASE

385

Sørensen, C. (1993a): What Influences Regular CASE Use In Organiza-
tions?—An Empirically Based Model. Scandinavian Journal of Informa-
tion Systems, Vol. 5, No. 1 (25–50).

Sørensen, C. (1993b): Introducing CASE Tools into Software Organizations.
Ph.D. Dissertation. Department of Mathematics and Computer Science,
Aalborg University.

Sørensen, C. (1994): CASE Introduction—Matching Technological and Or-
ganizational Characteristics. (91–118) in J. Stage et al. (Eds.): Quality
Software—Concepts and Tools. Aalborg: The Software Engineering Pro-
gram, Department of Mathematics and Computer Science, Aalborg Uni-
versity.

Sørensen, C. (1995): Why CASE Tools Do Not Support Co-ordination. (4/1–
4/3) in M. Barret (Ed.): CSCW (Computer Supported Co-Operative Work-
ing) and the Software Process. IEEE.

Tornatzky, L. G. & K. J. Klein (1982): Innovation Characteristics and Inno-
vation Adoption-Implementation: A Meta-Analysis of Findings. IEEE
Transactions on Engineering Management, Vol. 29, No. 1 (28–45).

Vessey, I. & A. P. Sravanapudi (1995): CASE Tools as Collaboration Sup-
port Technologies. Communications of the ACM, Vol. 38, No. 1 (83–95).

Wynekoop, J. L., J. A. Senn & S. A. Conger (1992): The Implementation of
CASE Tools: An Innovation Diffusion Approach. (25–42) in K. E. Ken-
dall et al. (Eds.): The Impact of Computer Technologies on Information
Systems Development. Amsterdam: North-Holland.

	star15 comment: * Published as: The Capability Maturity Model ans CASE. L. Mathiassen & C. Sørensen. In: Information Systems Journal, Vol. 6, 1996.

