
317

12
Soft Systems in Software Design*

Lars Mathiassen
Andreas Munk-Madsen

Peter A. Nielsen
Jan Stage

Introduction
This paper explores the possibility of applying soft systems thinking
as a basis for designing application software and it outlines a new
method for software design (Mathiassen et al. 1991). The method is
called “Rapid Systems Modeling”. It supports systems developers
and users in going from a problematic organizational situation to
the design of a new and modified computer application for that
situation.

Rapid Systems Modeling combines a set of widely appreciated
principles and methods into one coherent framework. The approach
taken to design emphasizes learning as in Soft Systems Method-
ology (Checkland 1981). Rapid Systems Modeling combines this ap-
proach to learning with techniques and tools for modeling and ex-
perimenting with systems based on object-oriented thinking and the
use of prototypes (Birtwistle et al., 1973; Jackson 1983; Coad et al.
1990; Budde et al. 1984). The use of Rapid Systems Modeling is con-
trolled through risk management (Boehm 1988, 1989) and a coher-
ent design proposal is produced based on the idea of faking a ra-
tional design process (Parnas et al. 1986).

Until now, Soft Systems Methodology has been used in various
organizational settings and disciplines (Checkland 1981; Checkland
et al. 1990). Attempts have also been made to adapt soft systems
ideas to information systems development, cf. (Wilson 1984; Wood-
Harper et al. 1985; Avison et al., 1990; Stowell et al. 1990). All of

DEVELOPING SYSTEMS

318

these efforts are concerned with organizational change and the
modeling involved is based on rigorous use of human activity sys-
tems. This paper reports from ongoing research where we attempt
to adapt and supplement soft systems ideas to make them useful in
a specific technical domain, i.e. the design of computer applications
as an integral part of organizational change.

Exploring soft systems ideas
We start by briefly reviewing soft systems ideas in relation to tradi-
tional software design methods. On that basis we discuss possibili-
ties for adapting soft systems ideas to the design of computer appli-
cations.

Idea 1: Systems as intellectual constructs
The very idea of Soft Systems Methodology is that we may inquire
into a problematic situation by means of the notion of system. Sys-
tems are intellectual constructs making explicit our subjective
meanings attributed to reality and our visions about reality. Multi-
ple perceptions are exploited to learn about and eventually improve
a problematic situation.

In software engineering the term “system” is seldom defined,
but computer applications are taken to be systems. The term
“system” gets its semantics implicitly through a set of tools and
techniques for specification of computer systems. Well-known ex-
amples are Structured Analysis/Structured Design (DeMarco 1979;
Yourdon 1989), Jackson Systems Development (Jackson 1983), and
Object-Oriented Analysis (Coad et al. 1990). The missing or weak
distinction within software engineering between the world of phe-
nomena and the world of perceptions has practical consequences.
Traditionally, software engineers conceive a computer application as
restricted to the automatic execution of the corresponding program
on a computer disregarding the perceptions and actions of users.
Concerns are separated and the computer system is thought of as
something in itself. The designers' task is reduced to specification of
a program meeting pre-defined and stable requirements (Floyd
1987).

The development of Rapid Systems Modeling is rooted in a tra-
dition where systems consistently have been viewed as intellectual
constructs dialectically related to the phenomena of computer appli-

SOFT SYSTEMS IN SOFTWARE DESIGN

319

cations. Thus, the exploitation of multiple viewpoints on the same
computer application has been emphasized (Mathiassen 1981;
Nygaard et al. 1987; Stage 1989; Nielsen 1990). In Rapid Systems
Modeling we take the position that the idea of “systems as intellec-
tual constructs” is applicable not only in learning about human ac-
tivity but also in designing computer applications.

Idea 2: Learning through action and reflection
Soft Systems Methodology is based on the idea that effective learn-
ing takes place as an interaction between real world activities and
thinking about the real world in terms of systems. The problematic
situation is experienced and expressed, different systems are de-
fined and modeled, and these models are then in turn confronted
with the real situation. In this way, models are used to structure
and orchestrate a debate amongst actors in the situation with the
purpose of learning about the problematic situation.

Conventional software development methods strongly empha-
size description, specification and modeling of the system to-be.
There is a number of widely accepted techniques for evaluating
specifications, e.g. structured walk-throughs and reviews, cf.
(Freedman et al. 1982). But only a small number of techniques are
provided to express situational characteristics in an informal and
loosely structured way. Some of the rare examples are: event lists
(Yourdon 1989) and lists of nouns and verbs (Jackson 1983). Gener-
ally, there is a growing appreciation of the idea of learning in soft-
ware engineering, but there are still few frameworks that utilizes
the relationship between action and reflection in a systematic way.
Instead, there seem to be two competing strategies: the specification
approach relying strongly on reflection before action, and the proto-
type approach relying mainly on experiments (actions) without em-
phasizing systematic reflection (Mathiassen et al. 1990).

Rapid Systems Modeling is based on the idea that software de-
sign requires learning and methods should thus support this by ex-
ploiting the relationship between action and reflection. One example
of the application of this idea is the Spiral Model (Boehm 1988).
Rapid Systems Modeling rejects the standpoint that prototypes and
specifications represents two competing strategies. Instead, proto-
types and specifications are seen as two complementary ways of ex-
pressing reflection in software design.

DEVELOPING SYSTEMS

320

Idea 3: Systems as wholes
At the heart of soft systems thinking is the principle that whole en-
tities exhibit emergent properties which are meaningful only when
attributed to the whole, not to its parts. In this sense, Soft Systems
Methodology utilizes holistic thinking. A conceptual distinction is
made between what a system is (emergent properties) and what it
does (constituent activities and relationships), and a practical dis-
tinction is made between defining the system and modeling its ac-
tivities.

Methods for software development emphasize detailed and
elaborate specification of systems. The methods distinguish between
different levels of abstraction and different aspects, e.g. data flow
and data definition. But overview and detail is provided without ex-
plicit conception of the system as a whole. A few methods suggest to
define the purpose of the computer system, e.g. “statement of pur-
pose” in Yourdon's modern version of Structured Analy-
sis/Structured Design (Yourdon 1989). Despite this, traditional
software engineering methods support development of reductionistic
models.

Rapid Systems Modeling supports designers in defining emer-
gent properties of the systems explicitly in addition to modeling
their contents. This is in accordance with the ideas behind Soft Sys-
tems Methodology. This position is further discussed in the follow-
ing two sections.

Idea 4: Defining systems
One of the main activities of Soft Systems Methodology is the defini-
tion of systems by formulation of root definitions. A root definition is
a precise description of the emergent properties of a system. It is
suggested that a root definition should contain the CATWOE ele-
ments explicitly: Customers, Actors, Transformation, Weltan-
schauung, Owner, and Environment. These six elements are closely
connected to the idea of human activity systems.

In Rapid Systems Modeling, systems are to be defined in a
similar way. The exact form of a definition is yet to be found, but
certain differences seem obvious. Firstly, when understanding com-
puter applications “transformation” is questionable as the key as-
pect of a system. The strong interactive nature of modern computer
applications suggests metaphors like “actor”, “agent”, “medium”,
and “tool” each implying somewhat different systems concepts. Sec-

SOFT SYSTEMS IN SOFTWARE DESIGN

321

ondly, the notion of Weltanschauung plays a crucial role in Rapid
Systems Modeling, but it needs to be specifically oriented towards
the assumptions underlying a particular computer system and its
relation to wider human activity systems. Thirdly, the other
CATWOE elements have to be reconsidered and possibly supple-
mented by other aspects relevant to the technical domain of com-
puter applications, e.g. interface facilities and technological plat-
form.

Idea 5: Modeling systems
In Soft Systems Methodology, a conceptual model contains the
minimal set of related (human) activities needed to carry out the
transformation described in the corresponding root definition. A sys-
tem is thought of as being adaptive. A set of monitoring and con-
trolling activities are therefore included in each model. The concep-
tual model must be defensible against the root definition and vice
versa.

In Rapid Systems Modeling each system is going to be
modeled. The models are evaluated and compared with the purpose
of eventually arriving at a design proposal. The flavor of the models
in Soft Systems Methodology is inherited, but the models have to be
different from conceptual models to support reflection on the techni-
cal domain. As a consequence, the method supports the use of two
types of models: object-oriented specifications and prototypes. The
method also recommends to use different versions of models dis-
playing different levels of detail. The purpose is to support organiza-
tional and technical learning and to facilitate choice among alterna-
tive systems.

Outline of Rapid Systems Modeling
The software design method, Rapid Systems Modeling, combines
and adapts already established ideas and methods about learning,
modeling and management. The ideas and methods are combined
and projected into the domain of designing computer applications
for specific organizational settings. We are in the midst of trying our
ideas in practice and in education. This, in turn, will reshape the
proposed method and hopefully make it more useful. In the follow-
ing we present a first version of the method based on our experience

DEVELOPING SYSTEMS

322

with each of the ideas and methods underlying Rapid Systems
Modeling.

Overall transformation and basic activities
The area of concern is analysis and design of computer applications.
We are interested in supporting systems developers and users in
going from an unstructured organizational situation with an ex-
pressed need for improved application of computers to an agreed-
upon proposal for a new or modified computer application. This
overall transformation of Rapid Systems Modeling is illustrated in
figure 1.

Our approach to this transformation is shown in figure 2.
Rapid Systems Modeling consists of three strongly related activities.
The method emphasizes learning about the problematic situation,
technical possibilities in terms of computer systems, and the rela-
tionship to the organizational setting. The approach to learning is
Soft Systems Methodology, but the specific techniques are adapted
from software development. Learning is in our view a necessary and
highly underrated activity in software design, see (Floyd 1987).

Problematic

Design
Proposal

situation
 Rapid Systems Modelling

Figure 1. The overall transformation of Rapid Systems Modeling.

learning
management

documentation

Figure 2. The main elements of Rapid Systems Modeling.

SOFT SYSTEMS IN SOFTWARE DESIGN

323

Still, other activities are also important: proper documentation is
crucial and effective management of resources is required.

Modeling based on prototypes and object-orientation
Our approach to learning is illustrated in figure 3. In applying
Rapid Systems Modeling, several concrete learning processes are
initiated. The initiation of a learning process is based on manage-
ment considerations. Learning processes can be performed in
parallel each requiring different amounts of resources and applying
different types of modeling techniques.

face the
situation

build systems
modelscreate

systematic
views

consequences
debate the

Figure 3. The learning activities of Rapid Systems Modeling.

Rapid Systems Modeling supports learning processes based on ob-
ject-oriented specification. Object-oriented thinking supports de-
signers in dealing with complexity by extracting in a condensed
form the fundamental properties of a computer system. Techniques
for defining systems and for modeling them as interacting sets of
objects are provided. The specific outlook of well-formulated root
definitions is still to be found. The object-oriented models are based
on an integration of the abstract datatype approach of Object-Ori-
ented Analysis (Coad et al. 1990) and the communicating sequential
processes approach of Jackson Systems Development (Jackson
1983). Our approach to object-oriented modeling utilizes the encap-
sulation and abstraction mechanisms and the focus on data rela-
tionships as suggested by Coad and Yourdon, and the application of
the idea of simulation of the real world as suggested by Jackson.

Rapid Systems Modeling supports learning processes based on
prototyping. Prototyping supports learning about the practical effect

DEVELOPING SYSTEMS

324

of specific design proposals. Rapid Systems Modeling provides tech-
niques for defining systems and techniques for modeling these as
computer-based prototypes. Also in this context, the specific outlook
of well-formulated root definitions has yet to be found, though initial
experiments have been performed (Bondgård et al. 1990). A signifi-
cant aspect of this type of learning process is to ensure the system-
atic experimentation with use of prototypes in realistic settings.

Producing a consistent outcome
Proper documentation is crucial in software development. The out-
come of Rapid Systems Modeling is a design proposal to be used as
the basis for further development. The documentation is used as the
basis for technical design and implementation, it is used to support
division of labor between systems developers, and it plays a key role
in assuring a satisfactory quality of the final computer application.
The documentation activity of Rapid Systems Modeling evaluates
and documents relevant insights gained through the learning activi-
ties. The approach taken is inspired by Parnas and Clements
(Parnas et al. 1986) and principles for the resulting design docu-
ment are being developed (Parnas 1972; Parnas et al. 1985, 1986;
Stage 1989).

Managing risks
Learning processes are in general as well as in software develop-
ment intrinsically open and experimental in nature, see for example
(Floyd 1987). At the same time, software development is a resource
demanding activity and effective management is required. Risk
management, as proposed by Boehm (1988, 1989) offers an approach
to management in software development that seems to handle this
dilemma. Focus is on situational risks, i.e. uncertainties and com-
plexities involved in deciding on relevant and useful actions. Tech-
niques are provided for identification of risks (i.e. a need for learn-
ing) in the design situation, for assigning priorities to identified
risks, and for practical planning of learning processes to resolve
risks. A specific version of this approach is being developed that also
involves monitoring and controlling the learning and documentation
activities (Larsen et al. 1991).

SOFT SYSTEMS IN SOFTWARE DESIGN

325

Summary
The purpose of this paper has been to argue for the application of
soft systems ideas in relation to software design. We have done this
by discussing some of the fundamental aspects of soft systems
thinking in relation to software design. The argument has been fur-
ther substantiated by outlining how soft systems ideas can be sup-
plemented and projected into this area of technical and organiza-
tional change.

The paper reports from an ongoing research program of which
the basic assumptions and ideas have been expressed at an overall
level. Substantial questions and many details are yet to be investi-
gated.

The research behind this paper has been partially financed by the
Danish Natural Science Research Counsel, Program No. 11-8394.

References
Avison, D. & A. T. Wood-Harper (1990): Multiview: An Exploration in In-

formation Systems Development. Oxford: Blackwell Scientific Publica-
tions.

Birtwistle, G. M., O. J. Dahl, B. Myrhhaug & K. Nygaard (1973): Simula
BEGIN. Lund and New York: Studentlitteratur and Petrocelli/Charter.

Boehm, B. W. (1988): A Spiral Model of Software Development and En-
hancement. Computer, May.

Boehm, B. W. (1989): Software Risk Management. Washington, D. C.: IEEE
Computer Society Press.

Bondgård, P., E. Degn & K. Vraagaard (1990): Prototyping: Understanding
and Change. Master's thesis, Institute for Electronic Systems, Aalborg
University. (In Danish)

Budde, R., K. Kuhlenkamp, L. Mathiassen & H. Züllighoven (Eds.): Ap-
proaches to Prototyping. Berlin: Springer-Verlag.

Checkland, P. B. & J. Scholes (1990): Soft Systems Methodology in Action.
Chichester: Wiley.

Checkland, P. B. (1981): Systems Thinking, Systems Practice. Chichester:
John Wiley and Sons.

Coad, P. & E. Yourdon (1990): Object-Oriented Analysis. Englewood Cliffs,
New Jersey: Yourdon Press and Prentice-Hall.

DeMarco, T. (1979): Structured Analysis and System Specification. Engle-
wood Cliffs, New Jersey: Yourdon Press and Prentice-Hall.

DEVELOPING SYSTEMS

326

Floyd, C. (1987): Outline of a Paradigm Change in Software Engineering.
(191–210) in G. Bjerknes et al. (Eds.): Computers and Democracy. Ave-
bury: Aldershot.

Freedman, D. P. & G. M. Weinberg (1982): Handbook of Walkthroughs, In-
spections, and Technical Reviews. Boston: Little, Brown and Company.

Jackson, M. (1983): Systems Development. Englewood Cliffs, New Jersey:
Prentice-Hall.

Larsen, T., C. Millum, H. Solberg & F. Tolstrup (1991): A Risk-based Model
for Designing Information Systems. Master's thesis, Institute for Elec-
tronic Systems, Aalborg University. (In Danish)

Mathiassen, L. & J. Stage (1990): Complexity and Uncertainty in Software
Design. (482–489) in Proceedings of the IEEE International Conference
on Computer Systems and Software Engineering. Washington DC: IEEE
Computer Society Press.

Mathiassen, L., A. Munk-Madsen, P. A. Nielsen & J. Stage (1991): Rapid
Systems Modelling: The Soul of a New Method. In Proceedings of the
Fourteenth Information Systems Research Seminar in Scandinavia., In-
stitute for Electronic Systems, Aalborg University, February.

Mathiassen, L. (1981): Systems Development and Systems Development
Method. Ph.D. thesis, Oslo University. (In Danish)

Nielsen, P. A. (1990): Learning and Using Methodologies in Information
Systems Analysis and Design. Ph.D. thesis, Department of Systems and
Information Management, Lancaster University, July.

Nygaard, K. & P. Sørgaard (1987): The Perspective Concept in Informatics.
(371–393) in G. Bjerknes et al. (Eds.): Computers and Democracy. Ave-
bury: Aldershot.

Parnas, D. L. & P. C. Clements (1986): A Rational Design Process: How and
Why to Fake It. IEEE Transactions on Software Engineering, Vol. 12,
No. 2 (251–257).

Parnas, D. L., P. C. Clements & D. M. Weiss (1985): The Modular Structure
of Complex Systems. IEEE Transactions on Software Engineering, Vol.
11, No. 3 (259–266),

Parnas, D. L. (1972): On the Criteria to be Used in Decomposing Systems
into Modules. Comm. ACM. Vol. 15, No. 12 (1053–1058),

Stage, J. (1989): Between Tradition and Transcendence. Analysis and De-
sign in Systems Development. Ph.D. thesis, Institute for Electronic Sys-
tems, Aalborg University.

Stowell, F. A., P. Holland, P. Muller & R. Prior (1990): Applications of SSM
in Information Systems Design: Some Reflections. Journal of Applied
Systems Analysis. No. 17 (63–70).

SOFT SYSTEMS IN SOFTWARE DESIGN

327

Wilson, B. (1984): Systems: Concepts, Methodologies, and Applications.
Chichester: Wiley.

Wood-Harper, A. T., L. Antill & D. Avison (1985): Information Systems
Definition: The Multiview Approach. Oxford: Blackwell Scientific Publi-
cations.

Yourdon, E. (1989): Modern Structured Analysis. Englewood Cliffs, New
Jersey: Prentice-Hall.

	star12 comment: * Published as: Soft Systems in Software Design. L. Mathiassen, A. Munk-Madsen, P. A. Nielsen & J. Stage. In: Systems Thinking in Europe, M. C. Jackson et. al. (Eds.), Plenum Press, 1991.

